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ABSTRACT 

It is shown that a flow invariance problem for semilinear parabolic equations is 
locally soluble if and only if Pavel's tangent condition holds. 

1. Introduction 

Motivated by [1],[7],[8],[10], we consider the local existence o f  solutions to the 

parabolic evolution equat ions 

f du/dt + A ( t ) u  = f ( t , u ) ,  
(1.1) / 

( u(s) = Uo, 

associated with the flow invariance condi t ion 

(1.2) u( t )  E D ¢3 D ( ( A ( t )  + Zo)a), 

s<t<T,= 

s < t < T  

in a Banach space X. Here Tis  a constant ,  0 =< s < T, 0 = a < 1, D is a closed sub- 

set o f  X, Zo is a constant  such that o(A( t )  + Zo) D {z E C; Re(z)  =< 0l ,  A( t )  gen- 

erates an analytic semigroup e -rA(t) for  0 =< t = T, and 

(A( t )  + Zo)" = (1/I1(1 - a)) r -a (A( t )  + Zo)e-r('4(t)+Z°)dr. 

Our  main interest is the Pavel 's  condi t ion (cf. [7],[8]) 

(1.3)a lim d i s t x ( U ( t + h , t ) v + h f ( t , v ) , D )  =0,  O < t <  T, v E D a ( t ) ,  
h ~ 0  + 
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w h e r e  Da(t)  = D tq D((A( t )  + g o ) a ) ,  U(t,s)v is the solution of  (1.1) with f = O, 

and u0 = v. W e  shall show that if 

(1.4) U(t,s)D C D for 0 -< s < t =< T, 

then (1.1)-(1.2) is locally soluble if and only if (l.3)a is valid. A typical case to 

which it applies is the semilinear parabolic systems 

(1.5) { u~+ ~ ai~(t ,x)DiDjuk=fk(t ,x ,u,Du),  s < t  < T, x E G ,  
i,j<-n 

bkOuk/OV + ck(t,x)u ~ = 0, S < t _--< T, x E aG, 

uk(s ,x )=u~(x) ,  x E G ;  k = l  . . . . .  m, 

associated with the flow invariance condition 

(1.6) u(t ,x) E L  s<=t<T,  x E G .  

Here G is a smooth bounded domain of  R ~, x = (xl . . . . .  x~), Di = O/Oxi, D = 
(DI . . . . .  D~), u = (u 1 . . . . .  u " ) ,  I is a closed convex subset of R m defined in sec- 

tion 2, and v is the outer normal vector field of  OG. Since the counterpart of  (1.4) 

is satisfied with respect to (1.5)-(1.6), we thus obtain a necessary and sufficient 

condition for local existence of  solutions to the flow invariance problem (1.5)-(1.6). 

The flow invariance problem stems from Nagumo [6] in studying ordinary dif- 

ferential equations in R n. Nagumo's work has now been extended to evolution 

equations (cf. [1],[3],[5],[7],[8],[9],[10]) and differential inclusions (cf. [2],[12]). 

The problem (l .  1)-(1.2) was studied in [1],[5] under (1.4) and the Nagumo-type 

condition 

(1.7) l i m i n f h - l d i s t x ( v + h f ( t , v ) , D ) = O ,  0_-<t< T, v E D a ( t ) ,  
h~0 + 

which is not a necessary condition for solving (1.1)-(1.2). Pavel obtained a result 

in [7],[81,[9] that (1.3)a with a = 0 is a necessary and sufficient condition for lo- 

cal existence of  solutions to (1.1)-(1.2) with a = 0. This applies to (1.5)-(1.6) with 

f independent of  Du. We also refer to [1],[3],[10] for existence of  solutions to 

(1.5)-(1.6) under a counterpart of (1.7). Especially, we are interested in [10], where 

Priiss proved that (1.1)-(1.2) is locally soluble if and only if the following condi- 

tion holds: 
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there is a constant cr > 0 such that for 0 -_< t < T, 

v E Da(t) ,  small h > 0, there is wh E Da(t  + h) 

(1.8)a satisfying [IZh~x = o ( h ) ,  ~Aa(t + h)Zh~x = o (h° ) ,  where 

l 
t + h  

Zh = U(t + h, t )v  + U(t + h , r ) f ( t , v ) d r -  Wh. 
e t  

As is announced in [10], whether (1.3)a is a necessary and sufficient condition for 

solving (1.1)-(1.2) remains an open question. Our main goal is to give an affirma- 

tive answer to such a question with respect to (1.5)-(1.6). 

2. Preliminaries and main results 

Let X and Y be Banach spaces. Then L(X;  Y) denotes the Banach space of  all 

bounded linear operators from X into Y, X ~-~ Y means that X is continuously 

imbedded in Y, and X ~-~ Y means that X is continuously and compactly im- 

bedded in Y. Moreover we set 

TA = {(t,s) E R2;O <- s <- t <- T}, T~ -- {(/,s) E TA;s < t}, 

J = [ 0 ,  T] ,  Js, r = J n [ s , r + ~ ] ,  J ~ , r = J N ( s , s + r ] ,  fo r s ,  r > 0 .  

In this paper, we are interested in the following assumptions for (l .  1)-(1.2). 

(A1) X i s  a Banach space, and {A(t) ; t  E J] is a family of  densely defined and 

closed linear operators in X for which p(A( t )  + z0) D {z E C; Re(z) -_< 0], and 

there is a constant cl > 0 such that 

I I ( z + A ( t ) ) - l l i x < - c l ( l + l z l )  -l for t E J, Re(z)  _-> Zo. 

(A2) If D(A(t))  = D(A(O)) for t E J, then there are constants c2 > 0, 0 < b <_- 

1 such that 

J l ( A ( t ) - A ( s ) ) ( A ( s ) + z o ) - l l l x < - C 2 ] t - s l  b fort ,  sEal. 

If D(A(t))  ~ D(A(O)) for t E J, then (A(t)  + Zo)-lu, for u E X, is continuously 

differentiable with respect to t, and there are constants ca > 0, 1 > -c4  > 0 such 

that 

H (A(t)  + Zo)(A(t) + z ) - l d ( A ( t )  + Zo)-I/dtllx <-- calz - zoJ¢% 

t E J ,  Re(z) ->_ z0. 

(A3) D is a closed subset of  X, and D(A(t ) )  ~-~ X for t E J. 
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(A4) f :  J x D x Y - ,  X is continuous and maps bounded sets into bounded sets, 

where Y ~ X is a Banach space and there is a constant  0 -5 ao < 1 such that  

( A ( . ) + z 0 ) - a u E C ( J ; Y )  f o r u E X ,  a 0 < a < l .  

DEFINITION 2.1. Let  0 <- s < T, and  (A1)-(A4)  be valid. Then  a funct ion u is 

said to  be a local mild solution o f  (1.1)-(1.2) if there is a constarit o > 0 such that  

u E C(Js, o; Y), u(Js, o) C D, and 

fs t u ( t )  = U ( t , S ) U o +  U ( t , r ) f ( r , u ( r ) ) d r  for  t E J~,o. 

Moreover ,  we impose the assumptions  o f  (1.5)-(1.6). 

(B1) There  is a positive cons tan t  d such that  for  k = 1 . . . . .  m, C k ~_ C l+d 

( J  x t~;[0,oo)), b k E [0,1}, and c k ( t , x )  = l if b k = 0. I f  c k is independent  o f  

t E J, then a k = (a~) : J x t~ -~ R n2 is un i formly  H61der cont inuous,  and for  

(y~ . . . . .  y , )  E R " \  IO}, t E J, x E (~, 

~a a ~ ( t , x ) y i y i  < 0; 
i,j~_n 

otherwise, we additionally suppose that  a k is uni formly cont inuously differentia- 

hie with respect to  t E J ;  k = 1 . . . . .  m. 

(B2) There are / - 1 integers 0 = m o  < m~ < • • • < m t  = m such that  a k = a ml, 

c k = c mi, b k = b ''~ for  mi- i  + 1 < k < mi,  i = 1 . . . . .  1; I = I1 × • . .  × It, where / j  

is a closed convex subset o f  R mj-'-mJ, and 0 E/j-  for  j = 1 . . . . .  1. 

(B3) f = ( f l ,  . . . , fro)  : j × ~ X I × R nm --* R m is uniformly H61der continuous.  

Now we state our  result for  (1.1)-(1.2). 

THEOREM 2.1. Let  (A1)-(A4) be satisfied, 0 <- s < T, ao < a < 1, Uo E Da(S), 

and (1.4) be valid. Then the problem (1.1)-(1.2) admits a local mild solution i f  and 

only  i f  (1.3)a holds. 

In order  to state our  result for  (1.5)-(1.6), we set, for  p > n, and Co > 0 suffi- 

ciently large, Xp = L P( G; Rm) ,  

Dp = [u E Xp;U(X)  E / f o r  a.e. x E  G}, 

A p ( t )  = ( ~-] ai}(t,. )D iDj  . . . . .  ~]a i~( t , .  ) D t D j )  + Co 
\ i,j i , j  
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with 

D ( A p ( t ) )  = [u E W2'p(G;Rm);bkOuk/av + ck( t , x )u  k = 0 

for x E  aG, k =  1 , . . . , m } ,  

and denote by Up: TA - ,  L (Xp;Xp) the evolution system generated by lAp ( t )  - Co; 

t E J } .  

With the above preparations, we state now our result for (1.5)-(1.6). 

TnEopa~u 2.2. Let (B1)-(B3) be satisfied. Then 

d i s t x p ( U p ( t + h , t ) w + h f ( t , . , w ,  Dw),Dp)  = o ( h )  (h x, 0) 

for  all p > n, 0 < q < 1, 0 <= t < T, w E cI+q(G;R m) with 

b k a w / a v + c k ( t , x ) w k = O ,  x E a G ,  k = l  . . . . .  m 

a necessary and sufficient condition for  the validity o f  the following assertion: 

For all 0 < s < T, p > n, ( 1 + n/p  ) /2  < a < 1, there exists a constant ~ > 0 such 

that (1.5)-(1.6) admits a solution u on Js, o satisfying U(Js, o) C I, u ( t )  E D(Ap( t ) )  

for  t E J~,o, and u E C(Js, o; Y)  (i ca(Js, o;Xp). 

3. Proof of the main results 

Our theorems are mainly based on [10]. Let us begin with two lemmas. 

LEMMA 3.1 (cf. [14], [13], or [4]). Let (A1)-(A2) be valid. Then the operator 

U: TA --' L ( X;  X )  is the evolution system generated by [ A ( t ) ; t E J I , and satisfies, 

for  u E X,  a E [0,1 ], b E [0,1], and some constant c > 0, 

(i) U(t , s )u  E C(Tzx;X),  ( A ( t )  + Zo)°U(t , s ) (A(s)  + Zo) -a E C ( T ~ ; L ( X ; X ) ) ,  

(ii) I1 ( A ( t )  + Zo)bU( t , s ) (A(s )  + Zo)-ellx <- c ( t  - s) e-°, ( t ,s)  E T~, 

(iii) U( t , s )U(s , r )  = U( t , r ) ,  U ( t , t )  = id, 0 < r -< s -< t -< T. 

LEMMA 3.2 (cf. [10],[1]). Let (A1)-(A4), and (l.8)e with ao < a < 1 be valid. 

Then for  every 0 <- s < T, and every uo E De(s), (1.1)-(1.2) admits a local miM 

solution. 

PROOF OF TrmOREM 2.1. With the use of Lemma 3.2, we note that to prove the 

sufficiency, it suffices to prove that (1.3)e- (1.4) implies (1.8)a. 

Given 0 -< t < T, and u E De(t),  we have, by (1.3)a, that there is a number 

do > 0 such that 

d i s t x ( U ( t + d , t ) u + d f ( t , u ) , D )  = o ( d )  for do > d >  0, 
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which implies that we can take vl = v l (d)  E D, v2 = v2(d) E X with []v2[Ix = 

o (d )  such that 

(3.1) U(t  + d , t )u  + d f ( t , u )  - vl - v2 = O. 

Let h > d with h - h °+a~/2a = d. We have, by (3.1), 

~ t + h  

U ( t + d , t ) u +  U ( s + d , r ) f ( t , u ) d r - v ~ - v 3 = O ,  
*It  

(3.2) 

where 

f 
t + h  

v3 = v2 + hO+a)/2af(t,u) + (U( t  + d , r ) f ( t , u )  - f ( t , u ) )  dr, 
a t  

which yields, by (A4) and Lemma 3.1, U v3l[x = o (h ) .  Moreover, applying 

Lemma 3.1 and using (3.2) with U(t  + h , t  + d), we have 

U(t  + h , t  + d)v3 = U( t  + h , t ) u  

f 
t + h  

+ U ( t + h , r ) f ( t , u ) d r - U ( t + h , t + d ) v ~ .  
*It  

Setting Zh = U(t  + h, t  + d)v3, and wh = U(t + h, t  + d)v~, we have that, by (1.4) 

and Lemma 3.1, wh E Da (t + h), and 

nzhllx = o ( h ) ,  Ilaa(t + h)zhllx = h-(l+a)/20([P3~x) = o(h(I-a)/2) • 

Consequently, we have (1.8)a. 
To prove the necessity, we note that for 0 -< t < T, Uo E Da (t), and 

f 
t + h  

u ( t + h )  = U ( t + h , t ) U o +  U ( t + h , r ) f ( r , u ( r ) ) d r ,  
*It  

dis tx (U( t  + h,t)Uo + hf(t ,  Uo),D) 

-<- II ue t  + h,t)Uo + hf( t ,  Uo) - u ( t  + h)IIx 

< U(t  + h , r ) ( f ( t ,  Uo) - f ( r ,  u(r)) dr 
X 

n + ( f ( t ,  Uo) U(t  h , r ) f ( t ,  Uo))drUx 

= o ( h ) .  

The proof is complete. 
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REMARK 3.1. From the proof  of  Theorem 2.1, the above calculation is still 

valid if (1.4) is replaced by the assertion that for 0 < t < T, u E D, and small 

h > 0, there are Wh E D ( ( A ( t  + h) + Zo)a), and ~ > 0 such that 

h - '  II U(t + h, t )u  - Wh IIx + h-°U ( A ( t  + h) + zo)a( U(t  + h, t)uh - wh)IIx = o(1).  

PROOFOFTnEOREM2.2. Set Y = Cl(  G ; Rm), and for u E Y, 

f ( t , u ) ( x )  = f ( t , x , u ,  Du),  t E J ,  x E  G, 

B ( t ) u ( x )  = (bkOuk/av + ck(t,x)uk)'~=l, t E J, X E OG, 

so that (1.5)-(1.6) can be rewritten in the form in Xp: 

~ u , + ( A p ( t ) - c o ) u = f ( t , u ) ,  s < t  <- T, 

(3.3) [ u ( s ) = U o ,  u ( t )  E D  m s<- t<-T .  

By making use of  a standard calculation (cf. [10],[1]), we have (AI)-(A4) with re- 

spect to (3.3), and 

U ( t,s)Dp C Dp for ( t ,s) E T A .  

From the Sobolev imbedding theorem 

D(A~(  t )) ~ [ u E cI+q( G; Rm); B( t )u = 0 on aG} 

for 1 < 1 + q < 2a - n/p < 2 - n/p and t E J, it follows that the condition 

(3.4) distxp(Up(t + h , t )u  + h f ( t ,u) ,Dp)  = o(h)  (h x, O) 

for all t E [0, T),  1 < 2a - n/p < 2 - n/p, and u E D ( A ~ ( t ) )  t') Dp is equivalent 

to the one that (3.4) holds for all t E [0, T),  1 < 1 + q < 2a - n/p < 2 - n/p, 

u E cI+q(G;R m) 0 Dp with B ( t ) u  = 0 on 0G. Hence it remains to prove that 

each mild solution of  (3.3) is, in fact, a solution of  (3.3), provided Uo E D(A~(s))  

with 1 < 2a - n/p < 2 - n/p. 

For convenience, we suppose that u is a mild solution of  (3.3) with s = 0. Hence 

u( t )  = U(t,O)uo + U( t , r ) f ( r , u ( r ) )  dr, t E J. 

From Lemma 3.1, we obtain immediately that 

(3.5) u ft. Ca(J;Xp) and A ~ ( . ) u ( . )  ~. L~(J ;Xp) .  
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On the other hand, it follows from (B3) that there is a small o > 0 such that 

f ( . , u ( . ) )  E L~(J;CP(G;Rm)). This together with (3.5) and [11] implies that 

there is a constant 0 < # < min{o,1/p] such that 

A~( . ) f (  . ,u( .))  E L~(J;Xp), 

so that by an elementary calculation, u(t)  E D ( A p ( t ) )  for 0 < t =< T. Conse- 

quently, u is a solution of  (3.3). The proof is complete. 

Finally, we give an application of Theorem 2.1 in which D is bounded by a 

function. 

E ~ L E 3 . 1 .  L e t l < 2 a - n / p < 2 - n / p , b > = l , c > = l ,  

I =  [u E Cl([0,Tr];R);u(x) <= sin(x) for all x E  [0,~r]l, 

A p u  = --Uxx 

f : I - ~  R 

Then the problem 

with D ( A p )  = W2'p((O,~r);R) CI Wl'P((O, Tr);R), 

such that f(U, Ux) = ululb-l/(1 + luxlC). 

i 
u t=Uxx+f (u ,  ux), xE(0 ,~ r ) ,  t > 0 ,  

(3.6) u(t,0) = u ( t , r )  = 0, u(t)  E I, t >- 0, 

u(O,x) = Uo(X), x ~  (0, Tr) 

admits a unique maximal solution 

u E C([O, tmax);D(A~p)) N C((O, tmax);D(Ap)),u([O, tmax)) C L 

PROOF. Since f is Lipschitz continuous, from the proof of Theorem 2.2 and 

the local extension procedure it suffices to show that (3.6) admits a local mild 

solution 

(3.7) u E C([O,6);D(Aa)), u([0,tS]) C I for some 6 > 0. 

Let X = LP((O, Tr);R), Y = CI([0,1r];R), w(x) = sin(x), 

D =  [ u E X ; u ( x )  < w(x) for a.e. x E  (0,Tr)l, 

and e -tA be the analytic semigroup generated by A. Moreover, setting w, = 

e-hAw -- W + hAw, u, = e -hAu  -- Wh for small h > O, u E D n D(Aa), we have 

Ilwhllx + IIAawhllx=o(h), u h E D N D ( A a ) ,  

so that, for u E D O D(Aa), h > O, 
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e-hAu < e - h A w  = W -- hw + Wh <- W + Wh, U E D N D(Aa) ,  

e-hAu + hf(u, ux) < e-hAw + hf(u, Ux) 

= w + h ( - w  + f ( u ,  ux)) + Wh 

<=W+Wh.  

Thus we have 

Ile-hAu -- uhllx + Ilaa(e-hAu -- Uh) IIx = o ( h ) ,  

d i s tx (e -hAu + hf(u,  Ux),D) = o ( h ) .  

It follows from Remark 3.1 and Theorem 2.1 that (3.6) admits a local mild solu- 

tion u, which obviously satisfies (3.7). The proof is complete. 

REUARK 3.2. It should be noted that the functionf  in (3.6) does not satisfy the 

Nagumo-type condition (1.7), and it is easy to see that [ y E D (A a); _ w - y <= w } 

or {y E D (A a); 0 =< y _-_6 w} is also a flow invariant set of  (3.6). In a flow invariant 

set for (1.5) bounded by upper and lower solutions, we refer to [10, Theorem 6]. 
However, [10, Theorem 6] cannot be applied to (3.6). 
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